skip to main content


Search for: All records

Creators/Authors contains: "Adhikari, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Creating self-sustaining wireless sensor networks to power the Internet of Things requires universal energy harvesting systems. MEMS energy harvesters are in particular demand as they can be batch fabricated to meet the large supply demands. However, currently silicon MEMS kinetic energy harvesters are fabricated with a narrow bandwidth of 1–2 Hz, so each application requires a custom designed device which limits the advantages of batch fabrication. This paper investigates the development of a passive tuning MEMS vibration energy harvesting method that is based on distributing the load to various locations along the proof mass using a liquid load. A 3D printed proof mass with an array of cavities was developed, where each cavity could be filled with liquid to alter the resonant frequency as desired. Cavities were filled with silicone oil to validate the concept. The results illustrate tuning of the frequency with a resolution of < 1 Hz and a range of approximately 50 Hz. This method represents a passive tuning method as no power is required and the tuning can be accomplished during manufacturing so that one single universal energy harvester could be made and then tuned to meet the end user’s frequency specification. 
    more » « less
  2. null (Ed.)